Maß- und Integrationstheorie

Übungsblatt 2

Aufgabe 1 (4 Punkte)

(a) Finden Sie zwei σ -Algebren \mathcal{A}_1 und \mathcal{A}_2 , so dass

$$\mathcal{A}_1 \cup \mathcal{A}_2 := \{ A_1 \cup A_2 : A_1 \in \mathcal{A}_1 \text{ und } A_2 \in \mathcal{A}_2 \}$$

keine σ -Algebra ist;

(b) Sei \mathcal{A} eine σ -Algebra und $A, B \in \mathcal{A}$. Zeigen Sie, dass $A \setminus B \in \mathcal{A}$ und $A \triangle B := (A \setminus B) \cup (B \setminus A) \in \mathcal{A}$.

Aufgabe 2 (6 Punkte)

Sei $\Omega = \mathbb{R}$ und $\mathcal{A} = \sigma(\{\omega\} : \omega \in \Omega)$.

(a) Zeigen Sie, dass

 $\mathcal{A} = \{ A \subset \Omega : A \text{ ist abz\"{a}hlbar oder } A^c \text{ ist abz\"{a}hlbar} \}.$

(b) Sei $\mu: \mathcal{A} \to \{0,1\}$ definiert durch

$$\mu(A) = \begin{cases} 0, & \text{falls } A \text{ abz\"{a}hlbar}, \\ 1, & \text{falls } A^c \text{ abz\"{a}hlbar}. \end{cases}$$

Zeigen Sie, dass μ ein Maß ist.

Aufgabe 3 (6 Punkte)

Sei $\Omega = \mathbb{R}$ und $\mathcal{B}(\mathbb{R})$ die Borel- σ -Algebra über \mathbb{R} . Für festes $\omega_0 \in \Omega$ definiere $\delta_{\omega_0} : \mathcal{B}(\mathbb{R}) \to [0,1]$ durch

$$\delta_{\omega_0} := \begin{cases} 1, & \text{für } \omega_0 \in A, \\ 0, & \text{für } \omega_0 \not\in A^c. \end{cases}$$
 (1)

Seien $(p_n)_{n\in\mathbb{N}}\subset\mathbb{R}_+$ und $(\omega_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ beliebig. Zeigen Sie, dass

$$\mu = \sum_{n=1}^{\infty} p_n \delta_{\omega_n}$$

ein Maß auf $\mathcal{B}(\mathbb{R})$ definiert. Zeigen Sie, dass die Bernoulli-, Binomial-, geometrische und Poisson-Verteilung als Maße der Form (1) aufgefasst werden können.